The role of N-methyl-D-aspartate (NMDA) receptors in wind-up: a mathematical model.
نویسندگان
چکیده
We present a mathematical model for the phenomenon of wind-up (Mendell, 1966, Exper. Neur. 16,316-22) which occurs in many neurons. We concentrate on its occurrence in the substantia gelatinosa of the dorsal horns of the spinal cord, where it is connected with certain pathological and nonpathological pain states. The model is a development of the model by Britton & Skevington (1989, J. Theor. Biol. 137, 91-105) for Melzack & Wall's gate control theory of pain (1965, Science, New York, 150, 971-9; 1982, The Challenge of Pain, Penguin: Harmondsworth), modified to take account of more recent information. Its variables are the electric potentials of various cells in the midbrain and the spinal cord. Britton & Skevington's original model simulated many of the phenomena observed in acute pain in humans, but not the wind-up mechanism. This is not surprising, since this model did not include the N-methyl-D-aspartate (NMDA) receptors that are now recognized as being crucial to the phenomenon. Here we rectify this omission, and obtain good agreement between the model and experimental data on wind-up. The positive feedback that NMDA receptors exhibit is shown to be the essential feature in producing wind-up. As an independent test of the model we simulate a completely different experimental set-up, and obtain good qualitative agreement with data there. Finally, we present a prediction of the model that has yet to be tested experimentally.
منابع مشابه
The effect of morphine dependence on expression of hippocampal N-methyl-D-aspartate receptor subunits in male rats
Introduction: N-methyl-D-aspartate (NMDA) receptors play a pivotal role in the development of tolerance and physical dependence to opiates. Activation of NMDA receptors involves the induction of long term potentiation (LTP) in hippocampus. Our previous study suggested that chronic oral administration of morphine enhanced NMDA dependent LTP in the CA1 area of hippocampal slices of rats. The p...
متن کاملThe neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β
Objective: Cinnamaldehyde may be responsible for some health benefits of cinnamon such as its neuroprotective effects. We aimed to investigate the cinnamaldehyde neuroprotective effects against amyloid beta (Aβ) in neuronal SHSY5Y cells and evaluate the contribution of N-methyl-D-aspartate (NMDA), ryanodine, and adenosine receptors and glycogen ...
متن کاملInteraction of aquaporin 4 and N-methyl-D-aspartate NMDA receptor 1 in traumatic brain injury of rats
Objective(s): -methyl-D-aspartate NMDA receptor (NMDAR) and aquaporin 4 (AQP4) are involved in the molecular cascade of edema after traumatic brain injury (TBI) and are potential targets of studies in pharmacology and medicine. However, their association and interactions are still unknown.Materials and Methods: We established a rat TBI model in this study. The cellular distribution patterns of ...
متن کاملNmda Receptors, Wind-up and the Gate Control Theory of Pain -a Mathematical Model
We present a mathematical model which is an extension of that of Britton and Skevington (1989) for the gate control theory of pain (Melzack and Wall, 1965, 1982). The variables of the model are the electric potentials of various cells in the midbrain and the spinal cord, such as T-cells and inhibitory and excitatory cells of the substantia gelatinosa (SG). The original model simulated many of t...
متن کاملAmelioration of Pentylenetetrazole-Induced Seizures by Modulators of Sigma, N-Methyl-D-Aspartate, and Ryanodine Receptors in Mice
Background: Sigma receptors, N-methyl-D-aspartate (NMDA) antagonist, and modulators of intracellular calcium may be useful for seizure control. Therefore, we aimed to evaluate the antiepileptic effects of opipramol, a sigma receptor agonist, against pentylenetetrazole (PTZ)-induced seizures in mice and assess ketamine and caffeine interaction with the antiepileptic effects of opipramol.Methods:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IMA journal of mathematics applied in medicine and biology
دوره 13 3 شماره
صفحات -
تاریخ انتشار 1996